Phys 410 Spring 2013, Prof. Anlage 15 February, 2013

Problem 1. Both the Coulomb and gravitational forces lead to potential energies of the form $U(\vec{r}_1 - \vec{r}_2) = \gamma/|\vec{r}_1 - \vec{r}_2|$, where $\gamma = kq_1q_2$ for the Coulomb force and $\gamma = -Gm_1m_2$ for gravity, and \vec{r}_1 , and \vec{r}_2 are the positions of the two particles. Show in detail that $-\nabla_1 U(\vec{r}_1 - \vec{r}_2)$ is the force on particle 1 and $-\nabla_2 U(\vec{r}_1 - \vec{r}_2)$ is that on particle 2.

Hint: Define $\vec{r} = \vec{r_1} - \vec{r_2}$ which is a vector that points from particle 2 to particle 1.

The PE is $U = \frac{\gamma}{r}$ and the forces can be written as $\vec{F}_{12} = \frac{\gamma}{r^2} \hat{r}$ and $\vec{F}_{12} = -\frac{\gamma}{r^2} \hat{r}$.

$$F = -\nabla U$$

$$Look at the x-component of -\nabla_{i}U:$$

$$(-\nabla_{i}U)_{x} = -\frac{\partial U}{\partial x_{i}} = +\frac{y}{r^{2}}\frac{\partial r}{\partial x_{i}} \qquad \text{with } r = \sqrt{(x_{i}-x_{2})^{2}+(y_{i}-y_{2})^{2}+(z_{i}-z_{2})^{2}}$$

 $\frac{\partial r}{\partial x_i} = \frac{1}{2} \frac{2(x_i - x_2)}{r} = \frac{x_i - x_2}{r}$

(-\vec{\nabla}u) = \vec{\gamma}{\tau} \frac{\chi_1 - \chi_2}{\gamma} . Now repeat for the y and z components of -\vec{\nabla}u $-\vec{\nabla}_{1}U = \sum_{r=3}^{3} \left[(X_{1} - X_{2}) \hat{x} + (Y_{1} - Y_{2}) \hat{y} + (Z_{1} - Z_{2}) \hat{z} \right] = \sum_{r=3}^{3} (\vec{r}_{1} - \vec{r}_{2}) = \sum_{r=3}^{3} \vec{r}_{1}$

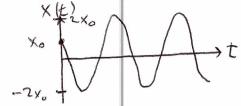
$$=\frac{1}{r^2}\hat{r}=\hat{F}_{12}$$

Now evaluate (- \$\vec{\nabla}_{2}U)_{\times}. The only difference will be in the chain rule derivative $\frac{\partial \Gamma}{\partial x_2} = \frac{1}{2} \frac{2(x_1 - x_2)(-1)}{\Gamma} = -\frac{(x_1 - x_2)}{\Gamma}$

This new minus sign will propagate through to become $-\vec{\nabla}_{1}U = -\frac{1}{12}(\vec{r}_{1}-\vec{r}_{1}) = -\frac{1}{12}\vec{r}_{1} =$

Problem 2

A mass on the end of a spring is oscillating with angular frequency ω . At t=0 its position is $x_0 > 0$ and I give it a kick so that it moves back toward the origin and executes simple harmonic motion with amplitude $2x_0$. Find the position as a function of time in the form $x(t) = A\cos(\omega t - \delta)$.



$$(x(c) = x_0)$$

 $(x(c) < 0)$
We are fold that $(x(t) = A \cos(xt - S))$

At t=0 we have
$$X(0) = X_0 = A \cos(-\delta) = 2 \times \cos(-\delta)$$

or $\cos \delta = \sqrt{2}$. Hence $\delta = \pm \pi/3$.

At t=0 we have $X(0) = X_0 = A\cos(-\delta) = 2X_0\cos(-\delta)$ or $\cos\delta = 1/2$. Hence $\delta = \pm \pi/3$.

Now look at the velocity $\dot{x}(t) = -A\omega\sin(\omega t - \delta)$, so that $\dot{x}(0) = -A\omega\sin(-\delta) = +2X_0\omega\sin\delta$. All we know about $\dot{x}(0) = -A\omega\sin(-\delta) = +2X_0\omega\sin\delta$. Hence it must be that $\delta = -\pi/3$. The full solution $\dot{x}(t) = 2X_0\cos(\omega t + \pi/3)$